.

Что такое лте сети

Сеть 5G E от AT&T медленней, чем 4G конкурентов

Нашумевший маркетинговый ход американского оператора AT&T по переименованию участков своей сети LTE в 5G Evolution не сделал услуги быстрее. Согласно замерам Opensignal, скорости 5G E сопоставимы, а в некоторых случаях даже ниже, чем в сетях LTE Advanced Pro от конкурентов.

Оператор AT&T, «придумавший» понятие «5G Evolution», так характеризует уровень этих услуг:

«5G Evolution — наш первый шаг на пути к 5G. Мы начинаем с обеспечения более высоких скоростей в нашей существующей сети LTE — до двух раз быстрее, чем у стандартного LTE».

В Opensignal решили исследовать возможности 5G Evolution. В качестве пользовательских устройств были выбраны смартфоны, на которых AT&T при подключении к определенным сегментам сети отображает название «5G E». Анализ данных показал, что абоненты оператора с 5G E-совместимыми смартфонами получают лучший опыт, чем пользователи AT&T с менее «продвинутыми» моделями смартфонов, например, ниже CAT16. Согласно замерам, скорость закачки для первых в 1,6 раза выше, чем для вторых (28,8 Мбит/с и 18,2 Мбит/с, соответственно).


Сравнение пользовательского опыта для обычных и 5G E-совместимых устройств

При этом абоненты с 5G E-совместимыми устройствами получают ту же скорость, что и пользователи других операторов с теми же моделями смартфонов. Причем пользовательский опыт для сетей T-Mobile и Verizon даже выше (29,4 и 29,9 Мбит/с, соответственно). В Opensignal считают, что скорости 5G E, с которыми сталкиваются пользователи AT&T, типичны для сетей 4G и, строго говоря, не могут считаться прологом к 5G.

Различия по скоростям в операторских сетях показывают, насколько улучшились технологии с момента первоначального запуска LTE, когда еще не использовалась агрегация несущих, 256 QAM, 4×4 MIMO, то есть LTE Advanced Pro:

«Тем не менее, пример AT&T 5G E подчеркивает, насколько различается опыт 4G. Возможно, операторы должны показывать другой значок для пользователей смартфонов при использовании новейших технологий 4G, таких как LTE Advanced Pro?»

Между тем, у AT&T есть и настоящая сеть 5G New Radio (5G NR), и в ближайшие месяцы все четыре американских оператора связи запланировали запуск 5G NR для пользователей смартфонов. К примеру, Verizon обещал подключить 5G уже 11 апреля. Впрочем, у этого оператора также есть, чем «поразить» пользователей — коммерческое решение «5G Home» (фиксированный беспроводной доступ).

Сеть была запущена прошлой осенью и стала первым в мире масштабным 5G-проектом, хоть и не стандартизированным. Аналитики компании MoffettNathanson в своей работе «A Peek Behind the Curtain of Verizon’s 5G Rollout» постарались заглянуть за занавес нового сервиса от Verizon. С момента запуска в Сакраменто сеть из 273 базовых станций охватила только шесть процентов домохозяйств в тестовых зонах и только три процента реально подключились к сервису.


Жительница Сакраменто не в восторге от соседства с малой сотой Verizon

При этом оказалось, что радиус действия малых сот «намного меньше, чем предполагалось», поэтому в больших городах их придется уплотнять. По данным MoffettNathanson стоимость прокладки оптоволокна в целом может быть на 64 процента ниже, чем установка малых сот. Именно это и вызвало сомнения в коммерческой привлекательности решения:

«…услуга 5G Home практически не масштабируется — малые соты 5G имеют низкий охват, дороги в установке и не могут быть экономически целесообразными для общенационального развертывания».


Оборудование Verizon

>Портал о современных технологиях мобильной и беспроводной связи

Функции eNodeB (Evolved NodeB)

eNodeB объединяет в себе функции базовых станций и контроллеров сетей 3-го поколения:

— обеспечивает передачу трафика и сигнализации по радиоканалу,

— управляет распределением радиоресурсов,

— обеспечивает сквозной канал трафика к S-GW,

— поддерживает синхронизацию передач и контролирует уровень помех в соте,

— обеспечивает шифрацию и целостность передачи по радиоканалу,

— выбирает MME и организует сигнальный обмен с ним,

— производит сжатие заголовков IP-пакетов,

— поддерживает услуги мультимедийного вещания,

— при использовании структуры с усилителями мощности на антенной мачте организует управление антеннами по специальному интерфейсу Iuant.

Интерфейс S1, как показано на рис.2, поддерживает передачу данных с S-GW и сигнализации через ММЕ. Отметим, что eNB может иметь соединения с несколькими S-GW.

Интерфейсы X2 используют для организации хэндоверов между соседними базовыми станциями, в том числе и при балансировке нагрузки между ними. При этом интерфейсы Х2 могут быть логическими, т.е. для их организации не обязательно реальное физическое соединение между eNB.

Функции P-GW (Packet Data Network Gateway)

Шлюз для выхода на пакетные сети P-GW организует точку доступа к внешним IP-сетям. Соответственно P-GW является якорным шлюзом для обеспечения трафика. Если абонент имеет статический IP-адрес, то P-GW его активизирует. В случае, если абонент должен получить на время сеанса связи динамический IP-адрес, P-GW запрашивает его с сервера DHCP (Dynamic Host Configuration Protocol) или сам выполняет необходимые функции DHCP, после чего обеспечивает доставку IP-адреса абоненту. В состав P-GW входит PCEF (Policy and Charging Enforcement Function), который входит обеспечивает качественные характеристики услуг на внешнем соединении через интерфейс Sgi и фильтрацию пакетов данных. При обслуживании абонента в домашней сети функции P-GW и S-GW могут выполнять как два разных, так и одно устройство. Интерфейс S5 представляет собой туннельное соединение GPRS или Proxy Mobile Ipv6. Если P-GW и S-GW находятся в разных сетях (например, при обслуживании абонента в роуминге), то интерфейс S5 заменяют интерфейсом S8.

LTE

Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения.
Эта статья или раздел описывает ситуацию применительно лишь к одному региону (Россия), возможно, нарушая при этом правило о взвешенности изложения. Вы можете помочь Википедии, добавив информацию для других стран и регионов. (Июль 2016)

Для термина «LTE» см. также другие значения.Официальный логотип

LTE (буквально с англ. Long-Term Evolution — долговременное развитие, часто обозначается как 4G LTE) — стандарт беспроводной высокоскоростной передачи данных для мобильных телефонов и других терминалов, работающих с данными. Он основан на сетевых технологиях GSM/EDGE и UMTS/HSPA, увеличивая пропускную способность и скорость за счёт использования другого радиоинтерфейса вместе с улучшением ядра сети. Стандарт был разработан 3GPP (консорциум, разрабатывающий спецификации для мобильной телефонии) и определён в серии документов Release 8, с незначительными улучшениями, описанными в Release 9.

LTE является естественным обновлением как для операторов с сетью GSM/UMTS, так и для операторов с сетью CDMA2000. В разных странах используются различные частоты и полосы для LTE, что делает возможным подключать к LTE-сетям по всему миру только многодиапазонные телефоны.

Хотя маркировка 4G используется сотовыми операторами и производителями телефонов, LTE (как указано в серии документов консорциума 3GPP Release 8 и Release 9) не удовлетворяет техническим требованиям, которые консорциум 3GPP принял для нового поколения сотовой связи, а также требованиям, которые были первоначально установлены Международным союзом электросвязи (в спецификации IMT Advanced).

Обзор технологии

См. также: Хронология LTE и Список LTE-сетей

LTE является стандартом беспроводной передачи данных и развитием стандартов GSM/UMTS. Целью LTE было увеличение пропускной способности и скорости с использованием нового метода цифровой обработки сигналов и модуляции, которые были разработаны на рубеже тысячелетий. Ещё одной целью было реконструировать и упростить архитектуру сетей, основанных на IP, значительно уменьшив задержки при передаче данных по сравнению с архитектурой 3G-сетей. Беспроводной интерфейс LTE является несовместимым с 2G и 3G, поэтому он должен работать на отдельной частоте.

Спецификация LTE позволяет обеспечить скорость загрузки до 326,4 Мбит/с, скорость отдачи до 172,8 Мбит/с, а задержка в передаче данных может быть снижена до 5 миллисекунд. LTE поддерживает полосы пропускания частот от 1,4 МГц до 20 МГц и поддерживает как частотное разделение каналов (FDD), так и временное разделение (TDD).

Ниже представлен рейтинг стран по временному охвату 4G LTE (данные OpenSignal на сентябрь 2015 года).

Место Страна Охват
1 Южная Корея 97 %
2 Япония 90 %
3 Гонконг 86 %
4 Кувейт 86 %
5 Сингапур 84 %
6 Уругвай 84 %
7 Казахстан 81 %
8 Нидерланды 80 %
9 Бахрейн 79 %
10 США 78 %
11 Швеция 78 %
12 Китай 76 %
13 Катар 75 %
14 Австралия 74 %
15 Эстония 74 %
16 Тайвань 73 %
54 Россия 49 %

Особенности технологии

См. также: System Architecture Evolution

Радиус действия базовой станции LTE зависит от мощности излучения и теоретически не ограничен, а максимальная скорость передачи данных зависит от радиочастоты и удалённости от базовой станции. Теоретический предел для скорости в 1 Мбит/сек — от 3,2 км (2600 МГц) до 19,7 км (450 МГц). Большинство операторов в России работают в диапазонах 2600 МГц, 1800 МГц и 800 МГц (стандарт LTE-FDD). Базовые станции диапазона 800 МГц способны обеспечить такую скорость на расстоянии до 13,4 км. Диапазон 1800 МГц — наиболее используемый в мире, он сочетает в себе высокую емкость и относительно большой радиус действия (6,8 км).

В ноябре 2015 года Международный союз электросвязи рекомендовал в Европе, Африке, на Ближнем Востоке и в Центральной Азии строить LTE-сети в диапазоне 694—790 МГц. Эти частоты в ряде стран, в частности в России, заняты аналоговым телевещанием.

Большая часть стандарта LTE рассматривает модернизацию 3G UMTS на то, что в конечном итоге будет технологией 4G. Большая часть работы направлена на упрощение архитектуры системы: она переходит из существующих UMTS цепи + коммутации пакетов объединенной сети к единой IP-инфраструктуре (all-IP). E-UTRA является беспроводным интерфейсом LTE. Его основные особенности:

  • Максимальная скорость загрузки из Сети до 299,6 Мбит/с и максимальная скорость загрузки в Сеть от абонента до 75,4 Мбит/с в зависимости от категории оборудования пользователя (антенна 4×4 с использованием спектра 20 МГц).
  • Низкая задержка при передаче данных (5 мс задержка для маленьких IP пакетов в оптимальных условиях), более низкая задержка при установке соединения.
  • Улучшена поддержка мобильности, в качестве примера терминал, движущийся со скоростью 350 км/ч или 500 км/ч в зависимости от диапазона частот.
  • OFDMA для нисходящей линии связи, SC-FDMA для восходящей линии связи с целью экономии энергии.
  • Поддержка и FDD и TDD систем связи, а также полудуплексной FDD с одной и той же технологией радиодоступа.
  • Повышение гибкости. Спектр: 1,4 МГц, 3 МГц, 5 МГц, 10 МГц, 15 МГц и 20 МГц для ширины соты стандартизированы.
  • Поддержка размеров соты от нескольких десятков метров (фемто и пикосоты) до 100 км. В нижних частотных диапазонах, которые будут использоваться в сельских районах, 5 км является оптимальным размером соты. В городе и в районах плотной заселённости более высокие частотные диапазоны (например, 2,6 ГГц в ЕС) используются для поддержки высокоскоростной мобильной широкополосной связи. В этом случае размер соты может быть 1 км или даже меньше.
  • Поддержка как минимум 200 активных клиентов в каждой соте 5 МГц.
  • Поддержка сосуществования со старыми стандартами (например, GSM/EDGE, UMTS и CDMA2000). Пользователи могут начать вызов или передачу данных в области с наличием LTE и, покинув область покрытия, продолжить работу без каких-либо специальных действий с его стороны в сетях GSM/GPRS.
  • Радиоинтерфейс коммутации пакетов.

Голосовые вызовы

Стандарт LTE поддерживает только коммутацию пакетов со своей сетью all-IP. Голосовые вызовы в GSM, UMTS и CDMA2000 являются коммутацией каналов, поэтому с переходом на LTE операторы должны реорганизовать свою сеть голосовых вызовов. Имеются три различных подхода:

Голос по LTE (VoLTE) Основная статья: VoLTE Circuit-switched fallback (CSFB) При таком подходе LTE обеспечивает только услуги передачи данных, поэтому, когда требуется принять или совершить голосовой вызов, терминал просто возвращается к сети с коммутацией каналов (например, GSM или UMTS). При использовании этого решения операторам просто нужно обновить MSC, вместо развертывания IMS, поэтому можно быстро начать предоставлять услуги. Однако недостатком является более длительная задержка при установке вызова. Данный способ организации вызова в настоящее время используют все российские сотовые операторы, предоставляющие LTE. Одновременная передача голоса и LTE (SVLTE) При таком подходе терминал работает одновременно в LTE и с коммутацией каналов, в режиме LTE предоставляются услуги передачи данных и в режиме с коммутацией каналов обеспечиваются голосовые услуги. Это решение основано исключительно на требованиях к мобильному телефону и не имеет специальных требований к сети. Недостатком такого решения является то, что такой телефон может стать дорогим и иметь высокое энергопотребление.

LTE в России

Первая сеть LTE в России была запущена ООО «Скартел» (бренд Yota) 20 декабря 2011 г. в Новосибирске и состояла из 63 базовых станций. До официального запуска абоненты могли приобрести USB-модем и пользоваться услугами в тестовом режиме (плата не взималась). Первым среди операторов «большой тройки» технологию LTE запустил «МегаФон» 23 апреля 2012 г. (также в Новосибирске), в Москве услуги сети LTE абонентам оператора стали доступны 14 мая 2012 г.

LTE присутствует в 85 регионах России. В зоне покрытия находится 70 % населения на начало 2016 года. Стоит учесть, что разные операторы предоставляют разный уровень покрытия. В некоторых случаях сеть запускается только в административных центрах регионов. Количество базовых станций мобильной связи стандарта LTE и последующих его модификаций в 2016 году в РФ увеличилось на 54,4 % — до 111,519 тысячи с 72,2 тысячи в 2015 году. Больше всего базовых станций LTE установлено в Центральном федеральном округе — 40,93 тысячи, наименьшее их число — на Дальнем Востоке — 4,935 тысячи.

Для организации голосовых вызовов в настоящее время используется подход CSFB, однако идёт тестирование и планируется к запуску VoLTE.

Иконка LTE Advanced c ЧА в Android

Федеральные операторы «МТС» и «Мегафон» используют частотные диапазоны LTE (англ.)русск. 3 (FDD 1800 МГц), 7 (FDD 2600 МГц), 20 (FDD 800 МГц), 38 (TDD 2600 МГц); «Билайн» — диапазоны 3, 7, 20; Tele2 — 7, 20, 31 (FDD 450 МГц); Yota — 3, 7, 38. Используются технологии LTE Advanced — частотная агрегация (carrier aggregation) и модуляция 256QAM.

«МТС» и «Билайн» заключили договор об использовании и строительстве сети во многих регионах по принципу Radio Access Network sharing. Это означает, что один оператор строит инфраструктуру, а другой оператор только использует её (раз в полгода производится финансовый взаиморасчёт). Такое решение позволяет значительно сократить затраты на строительство и обслуживание сетей (так как фактически требуется только одна сеть, которая используется одновременно двумя компаниями).

Также в Чеченской Республике действует LTE сеть регионального оператора «Вайнах Телеком» в диапазоне 40 (TDD 2300 МГц); на частотах 1800 МГц запущены сети: в Республике Татарстан от «Таттелеком», в Свердловской области, Курганской области, Ханты-Мансийском автономном округе — Югра и Ямало-Ненецком автономном округе сеть от оператора «Мотив» (ООО «ЕКАТЕРИНБУРГ — 2000»), в Крыму LTE предоставляют операторы WIN mobile и Волна мобайл

> См. также

  • E-UTRA
  • LTE-Advanced
  • Архитектура системы безопасности в сетях LTE

Примечания

  1. An Introduction to LTE. 3GPP LTE Encyclopedia. Проверено 3 декабря 2010.
  2. Long Term Evolution (LTE): A Technical Overview. Motorola. Проверено 3 июля 2010.
  3. The State of LTE (September 2015). OpenSignal
  4. Mobile-review.com LTE в 450 МГц и не только
  5. Елизавета Серьгина, Ксения Болецкая. Международный союз электросвязи рекомендовал строить LTE-сети в диапазоне 694–790 МГц. Ведомости (30 ноября 2015). Проверено 30 ноября 2015.
  6. «Voice and SMS in LTE Technology White Paper, Rohde & Schwarz, 2011»
  7. Кирилл Маковеев. Обогнали всех на «Йоту», НГС.Новости (21.12.2011).
  8. Александр Месаркишвили. «МегаФон» запустил сеть 4G в Новосибирске, Континент Сибирь Online (23.04.2012).
  9. Наталья Лаврентьева. «Мегафон» запустил 4G-сеть в Москве, Cnews (14.05.2012).
  10. Ведомости. МТС построила сети LTE во всех регионах (10 января 2016). Проверено 3 января 2017.
  11. ru_4g. Охват населения покрытием LTE в России составил 70% на начало 2016 года. Сообщество 4G. Проверено 3 января 2017.
  12. Роскомнадзор. В России на 55% выросло количество базовых станций стандарта LTE (рус.) (03.03.2017).
  13. Конспекты, Q&A: МТС и Вымпелком — официально о RAN sharing и spectrum sharing
  14. Слухи. LTE. network sharing: Шеринг инфраструктуры Билайн и МТС? В России наконец-то научились считать деньги?
  15. Крым получил частоты для LTE (рус.), Российская газета (7 ноября 2016). Проверено 2 сентября 2018.

История

Спецификации любого поколения связи, как правило, относятся к изменению фундаментального характера обслуживания, несовместимым технологиям передачи, более высоким пиковым битрейтом, новыми полосами частот, более широким каналом полосы пропускания, выражаемой в единицах частоты — герцах, а также большей ёмкостью для множественной одновременной передачи данных (более высокой системой спектральной эффективности, измеряемой в бит/с/Гц/сектор).

Новые поколения мобильной связи начинали разрабатываться практически через каждые десять лет с момента перехода от разработок первого поколения аналоговых сотовых сетей в 1970-х годах (1G) к сетям с цифровой передачей (2G) в 1980-х годах. От начала разработок до реального внедрения проходило достаточное количество времени (например, сети 1G были внедрены в 1984 году, сети 2G — в 1991 году). В 1990-х годах начал разрабатываться стандарт 3G, основанный на методе множественного доступа с кодовым разделением каналов (CDMA); он был внедрен только в 2000-х годах (в России — в 2002 году). Сети поколения 4G, основанные на IP-протоколе, стали разрабатываться в 2000 году и начали внедряться во многих странах с 2010 года.

В 2000 году, когда только шло освоение технологии связи третьего поколения 3G, один из ведущих производителей персональных компьютеров Hewlett-Packard и японский гигант сотовой связи NTT DoCoMo объявили о начале совместных исследований по разработке технологий передачи мультимедиа-данных в беспроводных сетях четвёртого поколения. Помимо них, разработки вели Ericsson и AT&T совместно с Nortel Networks.

Впоследствии появилось два действительно пригодных к реализации стандарта: LTE и WiMAX, которые, по мнению IMT Advanced, и стали новой эрой в развитии сети (сумятицу в умах конечных пользователей может создавать тот факт, что эти две версии несовместимы, и нельзя точно предсказать, как они будут конкурировать и какая из них в итоге доминирует).

LTE

Стандарт LTE разрабатывался в рамках 3GPP (The 3rd Generation Partnership Project) как продолжение CDMA и UMTS и первоначально не относился к четвёртому поколению мобильной связи. Международным союзом электросвязи как стандарт связи, отвечающим всем требованиям беспроводной связи четвёртого поколения, был избран десятый релиз LTE — LTE Advanced, который впервые был представлен японской компанией NTT DoCoMo. Так как данный стандарт можно реализовать на существующих сотовых сетях, то он стал более популярен у операторов сотовой связи. В апреле 2008 года компания Nokia заручилась поддержкой ряда компаний (Sony Ericsson, NEC) для развития стандарта LTE и придания этому стандарту конкурентоспособности против WiMAX. В том же году аналитическая компания Analysys Mason спрогнозировала увеличение роста потребности сотовых технологий, таких как LTE, нежели WiMAX.

Первая коммерческая сеть LTE была запущена 14 декабря 2009 года шведской телекоммуникационной компанией TeliaSonera совместно с Ericsson, в Стокгольме и Осло.

WiMAX

Стандарт WiMAX (или IEEE 802.16) разрабатывается созданной в июне 2001 года организацией WiMAX Forum и является продолжением беспроводного стандарта Wi-Fi, альтернативой выделенным линиям связи и DSL. У стандарта WiMAX много версий, но преимущественно они подразделяются на фиксированный WiMAX (спецификация IEEE 802.16d, также известная как IEEE 802.16-2004, которая была утверждена в 2004 году) и мобильный WiMAX (спецификация IEEE 802.16e, более известная как IEEE 802.16-2005, которая была утверждена в 2005 году). По названиям стандартов ясно, что фиксированный WiMAX предоставляет услуги только «статичным» абонентам после установления и закрепления соответствующего оборудования, а мобильный WiMAX предоставляет возможность подключения пользователям, передвигающимся в зоне покрытия со скоростью до 115 км/час. Преимуществом стандарта WiMAX было то, что он гораздо раньше стандарта LTE стал пригоден к коммерческой эксплуатации. В настоящее время компаниями, составляющими WiMAX Forum, являются такие известные производители, как Intel Corporation, Samsung, Huawei Technologies, Hitachi, и многие другие.

Первую сеть, основанную на технологии WiMAX, построила в Канаде компания Nortel, 7 декабря 2005 года.
Через два дня услуги беспроводного широкополосного доступа в сеть интернет стала предоставлять украинская компания «Украинские новейшие технологии» (тем самым став первой в странах СНГ), на основе микросхем Intel® PRO/Wireless 5116.

Технология

В марте 2008 года сектор радиосвязи Международного союза электросвязи (ITU-R) определил ряд требований для стандарта международной подвижной беспроводной широкополосной связи 4G, получившего название спецификаций International Mobile Telecommunications Advanced (IMT-Advanced), в частности установив требования к скорости передачи данных для обслуживания абонентов: скорость 100 Мбит/с должна предоставляться высокоподвижным абонентам (например, поездам и автомобилям), а абонентам с небольшой подвижностью (например, пешеходам и фиксированным абонентам) должна предоставляться скорость 1 Гбит/с.

Так как первые версии мобильного WiMAX и LTE поддерживают скорости значительно меньше 1 Гбит/с, их нельзя назвать технологиями, соответствующими IMT-Advanced, хотя они часто упоминаются поставщиками услуг как технологии 4G. В свою очередь, после запуска мобильными операторами сетей LTE-Advanced, в маркетинговых целях их стали называть 4G+. 6 декабря 2010 года МСЭ-Р признал, что наиболее продвинутые технологии рассматривают как «4G», хотя этот термин не определён.

Системы связи 4G основаны на пакетных протоколах передачи данных. Для пересылки данных используется протокол IPv4; в будущем планируется поддержка IPv6.

С технической точки зрения, основное отличие сетей четвёртого поколения от третьего заключается в том, что технология 4G полностью основана на протоколах пакетной передачи данных, в то время как 3G соединяет в себе как пакетную коммутацию, так и коммутацию каналов. Для передачи голоса в 4G предусмотрены технологии VoLTE (англ. Voice over LTE)

Основные исследования при создании систем связи четвёртого поколения ведутся в направлении использования технологии ортогонального частотного уплотнения OFDM. Кроме того, для максимальной скорости передачи используется технология передачи данных с помощью N антенн и их приёма М антеннами — MIMO. При данной технологии передающие и приёмные антенны разнесены так, чтобы достичь слабой корреляции между соседними антеннами.

Требования IMT-Advanced

Передовые международные мобильные телекоммуникационные системы (IMT-Advanced), определённые сектором радиосвязи МСЭ, должны отвечать некоторым требованиям, чтобы считаться сетями поколения 4G:

  • основываются на коммутации пакетов, используя протоколы IP;
  • пиковые скорости передачи данных от 100 Мбит/с для пользователей с высокой мобильностью (от 10 км/ч до 120 км/ч) и от 1 Гбит/с для пользователей с низкой мобильностью (до 10 км/ч);
  • используются динамически разделяемые сетевые ресурсы для поддержки большего количества одновременных подключений к одной соте;
  • их масштабируемая полоса частот канала 40 МГц;
  • минимальные значение для пиковой спектральной эффективности 15 бит/с/Гц в нисходящем канале и 6,75 бит/с/Гц в восходящем канале (имеется в виду, что скорость передачи информации 1 Гбит/с в нисходящем канале должна быть возможна при полосе пропускания радиоканала менее 67 МГц);
  • спектральная эффективность на сектор в нисходящем канале от 1,1 до 3 бит/с/Гц/сектор и в восходящем канале от 0,7 до 2,25 бит/с/Гц/сектор;
  • плавный хэндовер через различные сети;
  • высокое качество мобильных услуг.

Аппаратное обеспечение

Производителями оборудования на сегодняшний день являются такие ведущие компании, как Nokia Siemens Networks, Huawei, Alcatel-Lucent, и другие. В России выпуск сетевого оборудования начала компания Nokia Siemens Networks на базе совместного с НПФ «Микран» и корпорации «Роснано» предприятия под Томском. Выпускаемые ими мультистандартные базовые станции могут работать как в различных стандартах (2G/GSM/GPRS/EDGE, 3G/WCDMA/UMTS/HSPA и 4G/LTE/FDD/TDD/LTE-Advanced), так и большом количестве частотных диапазонов 800/900/1900/2100/2500/2700 МГц.

Первые чипы для модемов (MDM9225, MDM9625), которые будут поддерживать сети LTE, компания Qualcomm планирует выпустить в конце 2012 года. Это первые чипсеты, которые поддерживают технологию агрегации несущих частот, позволяющую комбинировать несколько радиоканалов в нескольких полосах частот. Благодаря этой технологии операторы могут обойти ограничение стандарта LTE в части требования наличия 20 МГц непрерывного спектра и в имеющихся у них LTE-сетях повысить скорость работы пользователей до 150 Мбит/с. Стоит также отметить, что чипы MDM9225 и MDM9625 обратно совместимы с более старыми стандартами мобильных сетей — EV-DO Advanced, TD-SCDMA и GSM, в результате чего модемы, в которых они будут устанавливаться, смогут работать в 7 разных режимах: CDMA2000 (1X, DO), GSM/EDGE, UMTS (WCDMA, TD-SCDMA) и LTE (причем, и в LTE-FDD и в LTE-TDD).

Новые системы на чипе Snapdragon 800, предназначенные для мобильных устройств, представила компания Qualcomm на выставке CES-2013. Это первый чип (MSM8974) со встроенным модемом 4G LTE, поддерживающим агрегацию каналов и скорость передачи данных Cat 4 до 150 Мбит/с. В 2014 году Intel планирует представить модем Intel XMM 7260 с поддержкой LTE Advanced.

Внедрение

В 2010 году расширение 4G сети TeliaSonera продолжается в 25 городах и зон отдыха в Швеции и 4 городов в Норвегии. До конца 2010 года TeliaSonera также внедрили коммерческие сети 4G для клиентов в Финляндии, Дании и Эстонии, а в апреле 2011 и в Литве.

Оператор сотовой связи МТС запустил в коммерческую эксплуатацию сеть четвёртого поколения (4G) на базе технологии LTE в Узбекистане. Сеть развёрнута в центральной части Ташкента в частотном диапазоне 2,5—2,7 ГГц, лицензию на использование которого узбекская дочерняя компания МТС получила в октябре 2009 года. Поставщиком оборудования для строительства сети является китайская Huawei Technologies.

С февраля 2011 года армянский мобильный оператор VivaCell-MTS полностью перешел к коммерческой эксплуатации сети в Ереване, и ныне развивается в регионах Армении.

С 9 декабря 2011 года в Бишкеке (Кыргызстан) начались подключения к скоростному беспроводному Интернету четвёртого поколения по технологии LTE.

Сеть LTE 4G на базе собственных технических ресурсов была развёрнута независимым альтернативным оператором связи Кыргызстана — ЗАО «Saima-Telecom». Сеть покрыла всю столицу — Бишкек, а затем планируется покрыть сетью крупные города Чуйской области. Жители этих городов будут иметь полноценный широкополосный доступ в сеть интернет, которые будут на уровне текущих цен.

17 июня 2011 года в Тирасполе между компаниями СЗАО «Интерднестрком» и Alcatel-Lucent Украина был подписан контракт о строительстве в Приднестровье мобильной сотовой сети 4-го поколения на базе LTE.

20 апреля 2012 года запущена в эксплуатацию первая коммерческая сеть LTE.

К маю 2012 года все крупные города Финляндии имеют покрытие сетью 4G несколькими операторами стандарта LTE. В планах — обеспечить 95 % покрытие территории страны за 3 года и 99 % за 5 лет.

В конце второго квартала 2012 года азербайджанский оператор сотовой связи Azercell запустил сеть 4-го поколения в центре Баку.

26 декабря 2012 года 4G сеть на базе LTE запущена в Казахстане под торговой маркой Altel4g.

Министерство связи Бразилии и Huawei подписали соглашение (2012), в рамках которого Huawei разработает решение LTE в диапазоне 450 МГц, которое будет использоваться для обеспечения мобильным ШПД жителей удаленных и сельских территорий.

18 сентября 2013 года национальный оператор «Алтын Асыр» запустил 4G-сеть на базе LTE в Туркмении.

С начала 2017 г. — полное покрытие в Белоруссии.

С 1 июля 2018 года на территории Украины (кроме неподконтрольных Киеву территорий) полноценно работает 4G-сеть в диапазонах 1800 МГц и 2600 МГц.

в России

Содержимое этой статьи или раздела нуждается в чистке. Текст содержит много маловажных, неэнциклопедичных или устаревших подробностей. Пожалуйста, улучшите статью в соответствии с правилами написания статей.

3 ноября 2012 года SkyLine-WiMAX начинала тестирование на юге России новой платформы широкополосного беспроводного доступа Canopy PMP 450 4G по технологии LTE pro.

По состоянию на 1 декабря 2016 г. сети 4G/LTE действуют в 83 из 85 регионов России.

Самой значительной проблемой для развития сетей на обоих стандартах является то, что для них нужны одни и те же диапазоны частот. В первой половине мая 2008 года компания «Скартел» начала закупку десятка предприятий, владеющих необходимыми для внедрения беспроводных широкополосных сетей частотами, и во второй половине того же года уже был осуществлен запуск первой в России коммерческой сети WiMAX. 9 ноября 2009 года Федеральная служба по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) опубликовала извещение о проведении четырёх конкурсов по продаже лицензий для оказания услуг широкополосной беспроводной связи в диапазонах 2300—2400 МГц. Конкурсы были запланированы на 18 и 25 февраля, 4 и 11 марта 2010 года и включали 40 регионов России. В итоге 39 из 40 лицензий оказались у компании «Связьинвест», причем 38 из них у дочернего «Ростелекома»; единственным регионом, где «Связьинвест» не выиграл, стала Чеченская Республика и таким образом одна лицензия досталась ЗАО «Вайнах Телеком». Однако Министерство обороны сразу согласовало данные частотные присвоения лишь с ЗАО «Вайнах Телеком», а вот компании «Ростелеком» пришлось подождать аж до ноября 2011 года.

28 декабря 2010 года решением Государственной комиссии по радиочастотам создана некоммерческая организация — Консорциум 4G — представляющая собой союз, основанный на членстве таких учредителей, как ОАО «ВымпелКом», ОАО «Мобильные ТелеСистемы», ОАО «МегаФон» и ОАО «Ростелеком», целью которой является изучение возможностей и условий внедрения в России сетей 4G в диапазонах 800 и 900 МГц, 1,8, 2,1 и 2,5—2,7 ГГц для разработки условий конкурсов на эти частоты (сейчас большинство из них заняты военными). Привлечение компаний сотовой связи зародило уверенность в том, что в России будут развиваться сети LTE и, кроме того, членство в Консорциуме 4G предполагает возможные преимущества в дальнейшем распределении частот. В январе 2011 года возможность появления LTE-сетей в России была оформлена законодательно. По этой причине в феврале 2011 года пополнить ряды Консорциума захотела сотовая компания Tele2, опираясь на опыт построения сети LTE в Швеции, но этого так и не произошло. В конце июля 2011 года Консорциум направил в Министерство связи исследования о том, что для развития LTE не стоит использовать отведенные под сети 2G и 3G частоты, а надо воспользоваться цифровым дивидендом — ресурсом в диапазонах 694—915 МГц и диапазоном 2,5—2,7 ГГц. Опираясь на данное исследование, Государственная комиссия по радиочастотам приняла решение, что двухдиапазонные сети (791—862 МГц и 2500—2600 МГц, FDD) смогут развернуть только четыре оператора и ещё три игрока смогут развернуть сети в одном диапазоне. Роскомнадзор обещал провести конкурсы на данные частоты в феврале 2012 года, но пока этого не сделал. Вне конкурса по всей России частоты получат «Скартел» и созданная при участии Министерства обороны компания «Основа Телеком» (получила частоты в январе 2012 года), в Москве — «МегаФон» и МТС, в регионах — компания «Ростелеком».

В сентябре 2011 года Федеральная антимонопольная служба пригрозила возбуждением административного дела в отношении Министерства связи и массовых коммуникаций и Консорциума 4G за то, что в ходе распределения частотного радиоресурса не были учтены региональные операторы и за то, что в Консорциум 4G до сих пор не могут вступить другие операторы.

Тем временем в сентябре 2011 года проводились конкурсы на частоты для получения WiMAX-лицензий в диапазонах 3,4—3,45 ГГц и 3,5—3,55 ГГц в восьми регионах и 29 городах России. Позже Роскомнадзор признал конкурсы в шести регионах несостоявшимися из-за того, что было подано на них лишь по одной заявке, лицензии на два оставшихся региона (Чеченскую Республику и Республику Ингушетия) достались ЗАО «Вайнах Телеком» и «Ингушэлектросвязь» соответственно. В городах Российской Федерации более всего комплектов лицензий на предоставление связи получил оператор ЗАО «Компания ТрансТелеКом» — одно из дочерних предприятий компании ОАО «Российские железные дороги». Стоит отметить, что этот диапазон относится к диапазону сантиметровых волн и его особенностью является то, что сигнал слабо распространяется сквозь стены зданий и потребуется большее количество базовых станций, чтобы обеспечить покрытие.

Коммерческий запуск сетей, основанных на стандарте LTE, впервые в России был осуществлен в Новосибирске в конце декабря 2011 года компанией «Скартел», которая собирается в мае 2012 года полностью перевести все своё оборудование на эту технологию. А вот впервые в Москве (март 2012 года) сеть LTE была запущена принадлежащей предпринимателю Евгению Ройтману группе компаний «Антарес». По состоянию на 16 ноября 2012 года LTE работает более чем в 23 крупных городах России.

В конце 2011 года в Томске открылся первый в России завод по производству станций 4G.

23 апреля 2012 года оператор сотовой связи МегаФон первым из операторов «большой тройки» предоставил своим клиентам в России возможность доступа к услугам мобильной связи четвёртого поколения (4G). Первым городом России, в котором была запущена сеть четвёртого поколения стал Новосибирск, а чуть позже и Москва.

На конец I квартала 2014 года в России было около 2 млн абонентов четвёртого поколения мобильной связи (LTE), к концу года ожидается 3 млн абонентов LTE, а к 2018 году их количество вырастет до 20 млн.

Технологии четвёртого поколения мобильной связи также могут быть использованы в сферах телемедицины, безопасности и охраны общественного порядка, дистанционного образования, транспортного управления и т. д.

В 2015 году Мегафон запустил 4G-сеть в 95 городах Урала. По подсчетам оператора, около 10 млн человек получили доступ к сетям 4G.

Список городов сети 4G в России

Предоставление государством спектра частот операторам мобильной и стационарной связи для связи четвёртого поколения в России. Всего сети 4G действуют сейчас в России в 64 регионах.

На 1 мая 2014 г. коммерческую эксплуатацию сети 4G производят: Yota, Freshtel, МегаФон — в 55 регионах, МТС, Сотовик — в 27 регионах, «Билайн» — в 11 регионах. «МОТИВ» — в Уральском регионе.

Радиус действия базовой станции зависит от мощности излучения, а максимальная скорость передачи данных — от радиочастоты и удалённости от базовой станции. Теоретический предел для скорости в 1 Мбит/сек — от 3,2 км (2600 МГц) до 19,7 км (450 МГц).

Критика

  • Недостаток аппаратов, способных работать с сетями 4G, заключается в их высоком энергопотреблении и немного более крупных габаритах (не всегда помещаются в детской или женской руке).
  • В сетях 4G пока (2013) удается передавать только данные, для голосового звонка телефоны переключаются в режим 3G (за исключением стран, где экспериментально внедрено решение VoLTE, например, Южной Кореи).
  • Наиболее важной проблемой распространения 4G является низкая активность инвесторов. Развитие сетей четвёртого поколения задерживает и то, что сети 3G имеют высокий потенциал интенсивного и экстенсивного развития, применительно к территории РФ к этой проблеме добавляется низкая плотность населения.

> См. также

  • 3G
  • 5G
  • Связь 6G
  1. Петербург — город легального CDMA
  2. DoCoMo и Hewlett-Packard создают беспроводные сети четвёртого поколения Архивная копия от 11 января 2006 на Wayback Machine // Нетоскоп, 21 декабря 2011
  3. ITU paves way for next-generation 4G mobile technologies
  4. Evolution to the Next Generation Mobile Network (недоступная ссылка). Проверено 23 мая 2012. Архивировано 3 февраля 2014 года.
  5. About 3GPP // 3gpp.org
  6. LTE против WiMAX // Вокруг света, 16 апреля 2008
  7. Nokia набирает союзников в борьбе за стандарт связи // Газета.ru, 17 апреля 2008
  8. Беспроводные миллиарды. Развитые страны выберут сотовую связь вместо WiMAX // РБК Daily, 31 июля 2008.
  9. TeliaSonera opens world’s first LTE networks
  10. About the WiMAX Forum Архивная копия от 28 июля 2008 на Wayback Machine WiMAX Forum
  11. WiMAX Forum Member Companies Архивная копия от 9 мая 2012 на Wayback Machine WiMAX Forum
  12. Nortel to build first WiMAX network in Canada with Alberta Special Areas Board Архивная копия от 21 ноября 2006 на Wayback Machine Nortel, 7 декабря 2005
  13. Государственный международный аэропорт «Борисполь» — главные воздушные ворота Украины — стал беспроводным // Вечерний Харьков, 9 декабря 2005
  14. ITU global standard for international mobile telecommunications «IMT-Advanced», Circular letter, March 2008.
  15. ITU World Radiocommunication Seminar highlights future communication technologies. International Telecommunication Union. Проверено 29 мая 2012. Архивировано 26 июня 2012 года.
  16. Голос в сетях LTE MForum.ru
  17. G.S.V. Radha Krishna Rao,G. Radhamani. WiMAX: A Wireless Technology Revolution. — 2007, ISBN 0-8493-7059-0.
  18. Слюсар, Вадим Системы MIMO: принципы построения и обработка сигналов.. Электроника: наука, технология, бизнес. – 2005. — № 8. С. 52—58. (2005).
  19. Vilches J. Everything you need to know about 4G Wireless Technology. TechSpot.
  20. Report M.1645, Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000
  21. 1 2 Report M.2134, Requirements related to technical performance for IMT-Advanced radio interface(s)
  22. Moray Rumney. IMT-Advanced: 4G Wireless Takes Shape in an Olympic Year Архивировано 17 января 2016 года. // Agilent Measurement Journal, September 2008
  23. Report M.2135, Guidelines for evaluation of radio interface technologies for IMT-Advanced
  24. LTE Portal
  25. Nokia Siemens Networks начала производство оборудования LTE в России // ICT-online, 13 декабря 2011
  26. Chipsets // Qualcomm — Microchip Technology
  27. Qualcomm готовит чипсеты для модемов LTE Advanced // ИКС-медиа, 7 марта 2012.
  28. Спецификация процессора Qualcomm Snapdragon 800. Проверено 29 марта 2013.
  29. Intel Announces First Commercial Availability of 4G LTE Modem; Introduces Module for 4G Connected Tablets and Ultrabooks™
  30. 4G — TeliaSonera
  31. МТС запустила 4G в Узбекистане
  32. 4G в Армении: история и перспективы
  33. Покрытие оператором Elisa-Saunalahti (недоступная ссылка). Проверено 4 мая 2012. Архивировано 19 января 2012 года.
  34. Покрытие по городам оператором Sonera
  35. Сетевые новости
  36. Самая скоростная технология 4G теперь в Баку! (недоступная ссылка). Проверено 20 июня 2012. Архивировано 10 июня 2012 года.
  37. lte-depot: Huawei to bring LTE 450 for Brazil. 3GPP is to support?
  38. TMCELL начинает подключение абонетов к сети LTE // сентября 2013
  39. Анна Афанасьева. «Скартел» купил WiMAX ComNews, 12 мая 2008
  40. Даниил Варламов. WiMAX в России запущен Mobiset.ru
  41. Анна Афанасьева. «Скартел» раскрыл карты ComNews, 3 сентября 2008
  42. Роскомнадзор опубликовал извещение о проведении аукционов Архивная копия от 19 ноября 2010 на Wayback Machine 4G-FAQ
  43. Главные разочарования российского ИКТ-рынка 2010 Архивная копия от 20 июня 2015 на Wayback Machine CNews
  44. Олег Синча. Минобороны разрешило «Ростелекому» использовать частоты для 4G-сетей Архивная копия от 22 мая 2012 на Wayback Machine Digit.ru, РИА Новости, 28 ноября 2011
  45. Консорциум 4G может рассмотреть вопрос о приеме новых участников через 2-3 месяца Архивная копия от 15 июня 2013 на Wayback Machine Воентелеком, 25 мая 2011
  46. Распоряжения Правительства РФ № 57-р «План использования полос радиочастот в рамках развития перспективных радиотехнологий в РФ» : офиц. текст : ввод в действие с 03.03.2012. — М. : Консультант, 2012. — 15 с.
  47. Анна Балашова. Tele2 просится в сотовый квартет Коммерсант, № 20/П (4561), 7 февраля 2011
  48. Тимофей Дзядко. Шведский заступник ComNews, Ведомости, 7 апреля 2011
  49. Анна Балашова, Владимир Лавицкий. «Большая тройка» зачастила Коммерсант, № 132 (4673), 21 июля 2011
  50. Сергей Мальцев. LTE в России: итоги 2011-го и перспективы 2012 года Spbit.ru, 27 января 2011
  51. Игорь Агапов. Конкурсы на LTE обойдутся без «Конкурсных торгов» Архивная копия от 31 марта 2012 на Wayback Machine Marker.ru, 30 марта 2012
  52. 1 2 Игорь Королев. LTE-гонка в России началась: «Билайн» отстал на старте Архивная копия от 19 июня 2015 на Wayback Machine // CNews, 8 сентября 2011
  53. ФАС может возбудить административное дело в отношении Минкомсвязи и «Консорциума 4G» и оспорить решение ГКРЧ по поводу сетей четвёртого поколения НЭП 08, 9 сентября 2011
  54. Роскомнадзор разыграет WiMAX лицензии в сентябре Livebusiness, 16 июня 2011
  55. Роскомнадзор признал несостоявшимися конкурсы на WiMAX частоты Livebusiness, 18 августа 2011
  56. Роскомнадзор выдал ещё немного WiMAX 12 сентября 2011 // Дарья Лютцау // ComNews
  57. WiMAX поделили Архивная копия от 2 ноября 2012 на Wayback Machine 12 сентября 2011 // Ксения Рассыпнова // ТАСС-Телеком
  58. 1 2 Валерий Кодачигов. Дочке РЖД достались 13 из 14 лотов на частоты для WiMAX Ведомости, 7 сентября 2011
  59. Yota: LTE в Новосибирске 26 декабря 2011 // Сергей Потресов // Mobile-review
  60. Yota: запуск LTE в Москве переносится Архивная копия от 19 июня 2015 на Wayback Machine 3 апреля 2012 // Игорь Королев // CNews
  61. В Москве появилась первая сеть связи четвёртого поколения 19 марта 2012 // Олег Сальманов // «Ведомости»
  62. Nokia Siemens и «Микран» запустили в Томске первый в РФ завод по производству станций 4G, Лента региональных новостей (5 декабря 2011). Проверено 18 июля 2012.
  63. Новосибирск получил 4G от «МегаФона» // KP.RU
  64. НГС.НОВОСТИ
  65. МегаФон | 4G ждет тех, кто не ждет
  66. Сбываются самые оптимистичные прогнозы аналитиков по развитию LTE в России. Ведомости (15.05.2014). Проверено 25 мая 2014.
  67. Интернет 4G стал доступен в 95 городах на территории Урала // РИА, 14 октябрь 2015
  68. МТС запустила собственную сеть 4G в столичном регионе // 03.09.2012
  69. Mobile-review.com

LTE как современная технология

Что такое LTE

Другое название LTE — 4G. Это говорит о том, что перед нами технология 4 поколения, гораздо более развитого, чем предыдущие. Аббревиатура LTE расшифровывается как Long Time Evolution. Это говорит о том, что создатели технологии планируют и дальше развивать её.

ВАЖНО! Основное отличие технологии от 3G заключается в скорости передачи данных. Минимальная скорость приёма информации — 300 Мбит/с, а минимальная скорость передачи данных составляет около 170 Мбит/с.

Одна из главных целей, которая была у создателей, — уменьшить стоимость передачи данных и «разгрузить» другие сети. Именно поэтому была создана новая схема соединений.

Режимы

Пользователи современных устройств обеспечены интернетом за счет IP-протокола и большого количества узлов. Ведь чем сложнее соединение, тем оно качественнее. Технология может действовать в двух режимах.

  • TDD — каналы для передачи данных уплотняются. И это позволяет улучшить качество соединения радиосвязи (сотового соединения).
  • FDD – сигналы разделяются по частотам. Это увеличивает стабильность связи, и улучшает качество соединения.

Диапазоны

На территории России работы происходит в отдельном диапазоне :

  • 862 МГц до 791;
  • от 2700 до 2500. В этом диапазоне не работают другие устройства, поэтому помех для работы нет.

Пропускная способность подобных устройств составляет около 150 Мб/с.

СПРАВКА! LTE гораздо более устойчив к помехам, чем другие виды связи.

Использование

Несмотря на то, что в настоящее время технология используется только для передачи данных на мобильных устройствах, в дальнейшем диапазон увеличится. Постепенно инновация будет интегрировано во многие другие устройства, среди которых:

  • системы охраны и сигнализации;
  • системы видеонаблюдения;
  • онлайн-банки;
  • аварийные службы;
  • различные бытовые приборы.

Но в настоящее время LTE есть только на мобильных устройствах, и эти устройства обладают определенными достоинствами.

Преимущества планшетов с LTE

Достоинства LTE

  • Основное преимущество планшетов с LTE от планшетов с другими видами связи заключается в скорости передачи данных. Обладатели устройства с LTE могут быстрее скачивать фильмы, музыку и в принципе быстрее пользоваться интернетом. А также пользователи могут создавать видеоконференции с большим количеством абонентов и смотреть различные видео в качестве FullHD.
  • Другое преимущество — планшеты не так сильно использует заряд аккумулятора, как это делают другие виды соединений. Поэтому устройство разряжается медленнее.
  • Следующее преимущество заключается в широкой зоне покрытия. Это объясняется тем, что планшеты, использующие эту технологию, могут также работать и в зоне покрытия 3G. Таким образом, если человек выезжает из местности, где работает LTE, он не теряет доступ к интернету. Просто планшет автоматически переключится на 3G, и абонент останется на связи.

ВНИМАНИЕ! Технология может быть не только встраиваться в планшет. Существуют также специальные модемы. Эти модемы достаточно просты в использовании, их просто надо вставить в планшет. Тогда планшетом можно пользоваться не только в городе, но также на даче и на трассе.

Проблемы LTE

Помимо преимуществ, также у технологии в планшете есть и определенные подводные камни.

  • Это очень молодая технология, и в настоящее время есть не во всех российских городах. Поэтому перед тем как покупать такой планшет, надо проконсультироваться с мобильным провайдером региона.
  • Несовместимость стандартов. Устройства с данной технологией на территории России действует в определённом частотном диапазоне. Он отличается от диапазона Европы и США. Поэтому надо быть очень аккуратным при покупке планшета в других странах или на таких сайтах, как eBay и Amazon.

LTE — очень перспективная технология, у которой большое будущее. Именно поэтому в настоящее время надо покупать устройства с lte.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *